Exercise 11

In Exercises 11-14, (a) solve the given equation by the method of characteristic curves, and (b) check your answer by plugging it back into the equation.

$$
\frac{\partial u}{\partial x}+x^{2} \frac{\partial u}{\partial y}=0
$$

Solution

The differential of a two-dimensional function $g=g(x, y)$ is given by

$$
d g=\frac{\partial g}{\partial x} d x+\frac{\partial g}{\partial y} d y
$$

Dividing both sides by $d x$ yields the fundamental relationship between the total derivative of g and its partial derivatives.

$$
\frac{d g}{d x}=\frac{\partial g}{\partial x}+\frac{d y}{d x} \frac{\partial g}{\partial y}
$$

Comparing this to the PDE, we see that along the (characteristic) curves in the $x y$-plane defined by

$$
\begin{equation*}
\frac{d y}{d x}=x^{2} \tag{1}
\end{equation*}
$$

the PDE reduces to the ODE,

$$
\begin{equation*}
\frac{d u}{d x}=0 . \tag{2}
\end{equation*}
$$

Solve equation (1), using ξ for the characteristic coordinate.

$$
y=\frac{1}{3} x^{3}+\xi \quad \rightarrow \quad \xi=y-\frac{1}{3} x^{3}
$$

Then solve equation (2) by integrating both sides with respect to x.

$$
u(x, \xi)=f(\xi)
$$

Here f is an arbitrary function. Now that u is known, change back to the original variables.

$$
u(x, y)=f\left(y-\frac{1}{3} x^{3}\right)
$$

Compute the first derivatives to check the solution.

$$
\begin{aligned}
& \frac{\partial u}{\partial x}=f^{\prime}\left(y-\frac{1}{3} x^{3}\right) \cdot \frac{\partial}{\partial x}\left(y-\frac{1}{3} x^{3}\right)=f^{\prime}\left(y-\frac{1}{3} x^{3}\right) \cdot\left(-x^{2}\right)=-x^{2} f^{\prime} \\
& \frac{\partial u}{\partial y}=f^{\prime}\left(y-\frac{1}{3} x^{3}\right) \cdot \frac{\partial}{\partial y}\left(y-\frac{1}{3} x^{3}\right)=f^{\prime}\left(y-\frac{1}{3} x^{3}\right) \cdot(1)=f^{\prime}
\end{aligned}
$$

As a result,

$$
\frac{\partial u}{\partial x}+x^{2} \frac{\partial u}{\partial y}=-x^{2} f^{\prime}+x^{2} f^{\prime}=0
$$

